Extending Cycles Locally to Hamilton Cycles

نویسندگان

  • Matthias Hamann
  • Florian Lehner
  • Julian Pott
چکیده

A Hamilton circle in an infinite graph is a homeomorphic copy of the unit circle S1 that contains all vertices and all ends precisely once. We prove that every connected, locally connected, locally finite, claw-free graph has such a Hamilton circle, extending a result of Oberly and Sumner to infinite graphs. Furthermore, we show that such graphs are Hamilton-connected if and only if they are 3-connected, extending a result of Asratian. Hamilton-connected means that between any two vertices there is a Hamilton arc, a homeomorphic copy of the unit interval [0, 1] that contains all vertices and all ends precisely once.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinite Hamilton Cycles in Squares of Locally Finite Graphs

We prove Diestel’s conjecture that the square G of a 2-connected locally finite graph G has a Hamilton circle, a homeomorphic copy of the complex unit circle S in the Freudenthal compactification of G.

متن کامل

Asymmetric Effects of Monetary Policy and Business Cycles in Iran using Markov-switching Models

This paper investigates the asymmetric effects of monetary policy on economic growth over business cycles in Iran. Estimating the models using the Hamilton (1989) Markov-switching model and by employing the data for 1960-2012, the results well identify two regimes characterized as expansion and recession. Moreover, the results show that an expansionary monetary policy has a positive and statist...

متن کامل

On the Number of Hamilton Cycles in Bounded Degree Graphs

The main contribution of this paper is a new approach for enumerating Hamilton cycles in bounded degree graphs – deriving thereby extremal bounds. We describe an algorithm which enumerates all Hamilton cycles of a given 3-regular n-vertex graph in time O(1.276), improving on Eppstein’s previous bound. The resulting new upper bound of O(1.276) for the maximum number of Hamilton cycles in 3-regul...

متن کامل

Alspach's Problem: The Case of Hamilton Cycles and 5-Cycles

In this paper, we settle Alspach’s problem in the case of Hamilton cycles and 5cycles; that is, we show that for all odd integers n ≥ 5 and all nonnegative integers h and t with hn + 5t = n(n − 1)/2, the complete graph Kn decomposes into h Hamilton cycles and t 5-cycles and for all even integers n ≥ 6 and all nonnegative integers h and t with hn+5t = n(n−2)/2, the complete graph Kn decomposes i...

متن کامل

Maximal sets of hamilton cycles in complete multipartite graphs

A set S of edge-disjoint hamilton cycles in a graph G is said to be maximal if the edges in the hamilton cycles in S induce a subgraph H of G such that G EðHÞ contains no hamilton cycles. In this context, the spectrum SðGÞ of a graph G is the set of integersm such that G contains a maximal set of m edge-disjoint hamilton cycles. This spectrum has

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016