Extending Cycles Locally to Hamilton Cycles
نویسندگان
چکیده
A Hamilton circle in an infinite graph is a homeomorphic copy of the unit circle S1 that contains all vertices and all ends precisely once. We prove that every connected, locally connected, locally finite, claw-free graph has such a Hamilton circle, extending a result of Oberly and Sumner to infinite graphs. Furthermore, we show that such graphs are Hamilton-connected if and only if they are 3-connected, extending a result of Asratian. Hamilton-connected means that between any two vertices there is a Hamilton arc, a homeomorphic copy of the unit interval [0, 1] that contains all vertices and all ends precisely once.
منابع مشابه
Infinite Hamilton Cycles in Squares of Locally Finite Graphs
We prove Diestel’s conjecture that the square G of a 2-connected locally finite graph G has a Hamilton circle, a homeomorphic copy of the complex unit circle S in the Freudenthal compactification of G.
متن کاملAsymmetric Effects of Monetary Policy and Business Cycles in Iran using Markov-switching Models
This paper investigates the asymmetric effects of monetary policy on economic growth over business cycles in Iran. Estimating the models using the Hamilton (1989) Markov-switching model and by employing the data for 1960-2012, the results well identify two regimes characterized as expansion and recession. Moreover, the results show that an expansionary monetary policy has a positive and statist...
متن کاملOn the Number of Hamilton Cycles in Bounded Degree Graphs
The main contribution of this paper is a new approach for enumerating Hamilton cycles in bounded degree graphs – deriving thereby extremal bounds. We describe an algorithm which enumerates all Hamilton cycles of a given 3-regular n-vertex graph in time O(1.276), improving on Eppstein’s previous bound. The resulting new upper bound of O(1.276) for the maximum number of Hamilton cycles in 3-regul...
متن کاملAlspach's Problem: The Case of Hamilton Cycles and 5-Cycles
In this paper, we settle Alspach’s problem in the case of Hamilton cycles and 5cycles; that is, we show that for all odd integers n ≥ 5 and all nonnegative integers h and t with hn + 5t = n(n − 1)/2, the complete graph Kn decomposes into h Hamilton cycles and t 5-cycles and for all even integers n ≥ 6 and all nonnegative integers h and t with hn+5t = n(n−2)/2, the complete graph Kn decomposes i...
متن کاملMaximal sets of hamilton cycles in complete multipartite graphs
A set S of edge-disjoint hamilton cycles in a graph G is said to be maximal if the edges in the hamilton cycles in S induce a subgraph H of G such that G EðHÞ contains no hamilton cycles. In this context, the spectrum SðGÞ of a graph G is the set of integersm such that G contains a maximal set of m edge-disjoint hamilton cycles. This spectrum has
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 23 شماره
صفحات -
تاریخ انتشار 2016